Logarithmic Functional Mean in Convex Analysis

نویسنده

  • MUSTAPHA RAÏSSOULI
چکیده

In this paper, we present various functional means in the sense of convex analysis. In particular, a logarithmic mean involving convex functionals, extending the scalar one, is introduced. In the quadratic case, our functional approach implies immediately that of positive operators. Some examples, illustrating theoretical results and showing the interest of our functional approach, are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means

We find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} C(a,b)+(1-alpha_{1} )H(a,b)

متن کامل

Some fixed point theorems and common fixed point theorem in log-convex structure

Some fixed point theorems and common fixed point theorem in Logarithmic convex structure areproved.

متن کامل

THE FUNCTION (bx − ax)/x: LOGARITHMIC CONVEXITY AND APPLICATIONS TO EXTENDED MEAN VALUES

In the present paper, we first prove the logarithmic convexity of the elementary function b x −a x x , where x 6= 0 and b > a > 0. Basing on this, we then provide a simple proof for Schur-convex properties of the extended mean values, and, finally, discover some convexity related to the extended mean values.

متن کامل

Some results on functionally convex sets in real Banach spaces

‎We use of two notions functionally convex (briefly‎, ‎F--convex) and functionally closed (briefly‎, ‎F--closed) in functional analysis and obtain more results‎. ‎We show that if $lbrace A_{alpha} rbrace _{alpha in I}$ is a family $F$--convex subsets with non empty intersection of a Banach space $X$‎, ‎then $bigcup_{alphain I}A_{alpha}$ is F--convex‎. ‎Moreover‎, ‎we introduce new definition o...

متن کامل

Optimal Convex Combinations Bounds of Centroidal and Harmonic Means for Weighted Geometric Mean of Logarithmic and Identric Means

In this paper, optimal convex combination bounds of centroidal and harmonic means for weighted geometric mean of logarithmic and identric means are proved. We find the greatest value λ(α) and the least value Δ(α) for each α ∈ (0,1) such that the double inequality: λC(a,b)+(1−λ)H(a,b) < Lα (a,b)I1−α (a,b) < ΔC(a,b)+(1−Δ)H(a,b) holds for all a,b > 0 with a = b. Here, C(a,b), H(a,b) , L(a,b) and I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009